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- SUMMARY - -, ,

\ 'A class of simple and robust estimators of the difference between location

parameters of correlated variables is proposed when some observations on either

of the variables are missing. We show that these estimators are consistent,

asymptotically normally distributed, and insensitive to outlying observations.

Asymptotic relative efficiency comparisons with other known estimators are made

to show the advantage of the proposed estimators.
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1. INTRODUCTION

The problem of estimating the difference between means of a bivariate

normal distribution when some observations on either of the variables are

missing has received a great deal of attention in recent statistical literature

(Wilks, 1932; Anderson, 1957; Hocking and Smith, 1968; Meita and Gurland, 1969;

Lin, 1971, 1973; Lin and Stivers, 1974). In this article we study the problem

of estimation of the difference between the location parameters of correlated

variables from fragmentary samples when the population being sampled is not

necessarily normal. More specifically, let (X, Y-6)' be a random vector with

absolutely continuous joint distribution function H which is free of e and is

symmetric in its arguments, i.e. H(u,v) = H(v,u), for (u,v)'E 2. Also, let

(Xi,Yi)', i=l,...,n be n pairs of observations on (X,Y)'; Xn+j, j=l,...,s,

be s additional observations on X; Yn+k, k=l,...,t, be t additional

observations on Y. The (Xi,Y 1)', Xn+j, and Yn+k are assumed to be mutually

independent for i=l,...,n, j=l,...,s and k=1,...,t. The problem is how to use

the fragmentary sample in the most efficient way to estimate the shift parameter

a. Gupta and Rohatgi (1981) considered the case that X and Y are linearly

related and constructed regression estimators which are linear combinations of

fragmentary sample means. Therefore, their estimators are sensitive to outlying

observations.

A class of simple and robust estimators e of 6 is proposed in Section 2.

We show that these estimators are unbiased if the underlying distribution H is

symmetric about some point (uiu 2 )' or the two fragmentary sample sizes are

equal, i.e., s=t. Also, it is shown that ; is consistent and asymptotically

normally distributed. In Section 3 we compare the asymptotic relative
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efficiency of a with other known estimators.

2. THE ESTIMATOR e

For the fragmentary sample given in Section 1, we take all possible

differences Yj-X i , i=l,...,n+sj=1,...,n+t, each with multiplicity a. We

also take all possible Walsh differences (Yi+Yi'-Xi-Xi,), 1<i<i'<n, each

with multiplicity a. Denote the ordered set of the above M=a(n+s)(n+t)+Bn(n+l)/2

differences by D(1 )(...(D(M) where a and a are nonnegative integers. A

natural estimator e of e is then the median of the D's, i.e.,

, (D(X)+o (X+l)), a(n+s)(n+t)+On(n+Z)/22i,

D(,+,), a(n+s)(n+t)+Bn(n+l)/2=2z+l.

Note that the estimator e (0,1) which disregards the information from the

incomplete pairs is a Hodges-Lehmann estimator of 6 based on Wilcoxon signed

rank statistic. The estimator e(1,0) which uses all the data points but ignores

the pairing information is based on the two-sample Mann-Whitney-Wilcoxon

stati sti c.

First, it is proved in the Appendix that the distribution of the difference

6(a,B)-e is free of 6 and the estimator k(a,a) is distributed synnetrically

about a if either of the following two conditions hold: (a) the distribution H

is symmetric about some point (uI, 42)'. (b) the two fragmentary sample

sizes are equal, i.e., s=t. Thus under the stated conditions, the estimator 6

is unbiased. Now, let us consider the asymptotic performance of e.

Theorem 1. Let the distribution functions of X1 and Y1-e-X1 be denoted by

F

F and G. The corresponding density functions f and g of F and G are assumned to

Ij _ .. .' ... .-
VJ
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satisfy the mild conditions ffl(u)du<- and fg2 (u)du<-, respectively. Also,

let N=2n+s+t and AiX 2,A3 be nonegative numbers such that %I+x3>0,

X2+x3>0 and x1+x 2+2x3=1. Then, as N- -, s/N-0-1, t/N-),2 , n/N-x 3, the

distribution of N (e(cB) - 0) converges to a normal distribution with mean 0 and

variance a2 (e) =

La{ 1/12+x 3(1/2-fF(u)F(v)dH(u,v))}+a2 3/{12(A 3+ 1 )(x3+i).+

a6,2{1l/2-2fF(u)G(v-u)dH(u,v)}/{(x 3+Xl)(x 3+ 2)}]/[E(x 3+xl) (A 3+X2 )

Jf2 (u)du+BX2 fg2(u)du/{(xB+xl)(xB+x2)}].

The above theorem also shows that e (a,a) is consistent. We note that the

computation of e requires finding the median of the a(n+s)(n+t)+ in(n+1)

differences and becomes rather tedious for a large set of data. Fortunately,

there are several shortcut methods of obtaining e (Lehmann, 1975).

3. THE EFFICIENCY OF e

The estimator e is compared with the estimator e1 (Lin and Stivers, 1974,

(2.4)), a regression estimator e2 (Gupta and Rohatgi, 1979, (9)) and a naive

n+t n+s
estimator e3=7-, where 7= Yi/(n+t) and X= Xi/(n+s). All the estimatorsSi= i=i

mentioned above are consistent and asymptotically normally distributed.

Let e and e' be asymptotically unbiased estimators for a parameter e in the

sense that both N (e-e) and N (6'-e) have asymptotic distributions with zero'4

means. The asymptotic relative efficiency of e with respect to e', denoted by

ARE(e,e'), is defined by

I
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ARE (ee'): 2(GI)o26G

where a2 (e) = lm var (6'e) and a2( I) = lim var (N~e') (c.f. Randles andN N -

Wolfe (1979), p. 227).

Two bivariate distributions were considered for H in the comparison study:

(a) A bivariate normal distribution with unit variance and correlation

coefficient p.

(b) A bivariate exponential distribution (Gumbel (1960)). The joint

distribution function is

H(u,v)= F(u)F(v) [I+T{1-F(u)}{I-F(v)}],

where F(u)=l-e-u, -1<T<1 and p=t/4.

The advantage of using Gumbel's bivariate exponential distribution for our
comparison study is that the asymptotic variance a2(^) of ^ in Theorem 1 has a

closed form. For each family of bivariate distributions mentioned above and a

group of selected values of p and T, the asymptotic relative efficiencies

ei(a,B)=ARE(&(a,a),ei), i=1,2,3, were computed. Table 1 provides the

computational results for (A): x1=0.2, X2=.2, X3=0.3 and (B): X1=0.05,

X2=.35, X3=.3 under the normal distribution. The estimator 6 (1,0) performs

as well as ei(i=1,2,3) except for large values of p. The estimator 6(1,1) is

more efficient than e (1,0) for positive p. This is not surprising because

6(1,0) ignores the pairing information. However, if the ratio 8/a is too large,

the efficiency of the estimator 6(a,B) becomes rather low except for extremely

, large p.

Results similar to Table 1 were also found for other combinations of Xi ,

i=1,2,3. The choice of a=1 and 0=1 generally yields a good estimator which can

be applied for a wide range of values of p without requiring the user to specify

1K -- ... - .. .r( w. .-
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or estimate the correlation coefficient p.

The estimator 5 does much better than ei, i=1,2,3, for heavy tail

distributions as is to be expected because ei(i=1,2,3) is a linear combination

of fragmentary sample means (See Table 2). In particular, if H is a bivariate

Cauchy distribution (Johnson and Kotz, 1976, p. 295) which is not shown in our

tables, the ARE (e,6i)=a.,i=1,2,3.

4. REMARK S

An interesting feature of 6(1,0) is that it can be used even when the

pairing of X.i with 'Y', i= 1,...,n, cannot be identified (c.f. Hollander,

Pledger, and Lin (1974)). For example, a statewide readiness test was given at

the beginning of the 1979-80 school year to every incoming first grade public

school student of South Carolina. The purpose of this test was to distinguish

those students who were ready for the formal first grade curriculum from those

who were not ready. A pilot testing was conducted to obtain the cutoff score

using a random sample of South Carolina's kindergarten students at the end of

the 1978-79 school year. Educators have constantly demonstrated that in the

very early years of schooling a vast amount of a student's achievement is caused

by maturation and not necessarily by instruction. This coupled with the fact

that these two tests were conducted approximately four months apart establishes

a concern as to how much the cutoff score previously determined by the pilot

test should be moved upward. So the problem~ becomes estimating "maturational

growth" occurred during the summer months. However, many of the students in the

pilot test cannot be identified at the data analysis time due to various human

factors. Therefore, all the parametric and regression estimation procedures

mentioned before are not valid. A similar example was also cited by Hollander,
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Pledger and Lin (1974).

Theorem 1 can be used to construct a test of e=e 0 , for any eo . By

looking at the acceptance regions of such tests, one could-in theory-construct

a confidence interval of e based on the fragmentary samples.

5. APPENDIX

I

Proof of small sample properties of e. The proof that the distribution of the

difference , is free of e is straightforward. The proof of the symmetry

of the distribution of 6(a,a) about e is similar to that given by Lehmann, 1975,

Theorem 3, p. 86.

Two lemmas are needed to prove Theorem 7. First, let us define a scoring

function for comparing two observations Xi and Y j by

(i ~j = 1, Xi <Yj,9

(' 0, otherwise,

and
n+s n+t

WX, :m n O (XiYj)+B O (Xi+Xi'I, Yi+Yi').

Si=1 j=l i=1 V=1

Lemma 1. For any real number c and integer i between I and a(n+s)(n+t)+

S n(n+l), the ith ordered difference D(i)<c if and only if

Wx,y_cia(n+s) (n+t)+ n(n+l )-i.

Proof. C.f. Theorem 4 of Chapter 2, p. 87, of Lehmann, 1975.

Lemma 2. For e=O and a positive real c, the distribution of
J ((n+s) (n+t)N)-- {WxY_c/,rrT -a(n+s)(n+t)Pl-on(n+l)P2/2}

converges to a normal distribution with mean 0 and variance

T . . .. ... . '. .i.. ... . V.¢
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9 =a EI/12+X 3{1/2-2fF(u)F(V)dH(uV)1]+s X3/{12(X 3+Xl)(X 3+X2)} +

35~1l/2-2fF(U)G(V-U)dH(U,V)/0.. 3+Xl)(..3+X2)'I

as N- -', s/N-xl, t/N-~x2, n/N-X 3, where p1= f(u+c/,ffdF(u), r(.)=l-F(.)

and P2=JG(u-2c/vffMdG(u)-

Proof. For convenience, let us define a sequence of fragmentary samples

(Xim Yim~" (X Y~ m)'; Xn 1m" n
1 '1m ... (nin,m nin, m ' m m, X nm+l'm

Y m, where (X ,1 +c/v'Fl-)' has distribution function H (~,.,m

Nm=2nm+S +tm) i and Yj~ have distribution functions F(x) and F(y+

C/ Fm) , i=,...ns =l,...,n~tm, respecti vely, and sm/NmI X1, tm/Nm-X2,

n m/N m- -x 3, as m-- Furthermore, we assume that (X ,' Y i )', Xnmj and

Ynm+km are mutually independent for i=,.,nm, j=1''"'sm' k=l,*j.tm and

(Xi'mYi'm)'=(UV-C/fm)', m>1, where (U,V)' has distribution function H.

Now, let P1,m =fF(u+c/yffm)dF(u) P2,m =fG(u-2c/Afm)dG(u),

W*={ (nm+Sm)(nm+tm) NmIV a~ :'~ m m m[ 4 )(XY)P +

n n
C~ 'I Y m''im~i' ,m1-P2,m and

m m nm+ nm+ mnm+tm
T* ~~~F(xi'm+C/VffM)Pi1 + a" FY')p~
Im lntnN (n +F(tm)PiN;

m Jul
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nm
S+ m -G(Yi ,m Xim c/vTm)P2,m "

'(n, Sm)(nm+tm)Nm }' i 1

Then, it follows from the argument provided by Hollander, Pledger and Lin (1974,

p. 179) that Wm and Tm have the same limiting distribution.

The asymptotic normality of Tm follows from a version of Berry-Esseen

Theorem (Chung, 1968, Theorem 7.1.2., p. 185).

Proof of Theorem 1. For any real c, P, (N (e(t'a)-e)<c):

PO(N (aO)<c)=Po(e(a,)<c/A ). Without loss of generality, we can assume

that a=0. Consider first the case c(n+s)(n+t)+ an(n+l)=2z+1. By Lemmas 1 and 2

the fact that ff2(u)du<- and fg2(u)du<- (Olshen, 1967, and Mehra and

Sarangi, 1967),
Po(D(,+l)<C/Y- ) =Po(Wx/YC/,, - < a(n+s)(n+t)+Bn(n+l)/2+1)

2

Po (n+s)(n+t)N. { _xc/v'-a(n+s)(n+t)Pl-n(n+1)P 2/2](

OA2 N((n+s)(n+t) 3r B }

N N (1/2 -f F(u+c/VR)dF(u))+ 2(X3+A,) (A3+2) (1/ 2 -fG(u-2c/vW)dG(u)

S-- {c{z(X+X) (x+) 2 ) f 2 (u)du + OX3 2fg2(u)du/( (X3+X1)(X 3+X2 )) ]/ hJ, (A-i)

as N -, s/N-Xl, t/N-X 2. n/N-tX3, where D is the distribution function of

N(0,1).

In the case a(n+s)(n+t)+ Bn(n+)=2., the probability Po(;<c/VI) is bounded

below and above by PO(D(X+I)<.c/A-) and PO(D(L)<c/AN-). By the same

argument, it can be shown that these two probabilities have the same limiting value

, (A-I).

I
,,-1



TABLE 1. THE ASYMPTOTIC RELATIVE EFFICIENCY e(c, ) X 100 UNDER
BIVARIATE NORMAL DISTRIBUTION

(A): xi=0.2, X2=0.2, X3=0.3

(B): x1=0.05, X2=0.35, X3=0.3

Correlation el(l,O) e2(l,O) e3 (1,O) el(l,l) e2 (1,1) e3 (1,1)

coefficient

(A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B)

-0.8 89 84 89 84 96 96 82 77 82 77 89 88
-0.6 91 89 93 89 96 96 85 82 86 83 90 89
-0.4 94 92 96 94 96 96 88 87 91 88 91 90
-0.2 95 95 99 97 96 96 91 91 95 93 92 92
0.0 96 96 101 98 96 96 94 94 99 97 94 94
0.2 94 94 100 97 95 95 96 96 101 99 97 97
0.4 89 88 94 90 94 94 96 95 102 98 102 103
0.6 77 75 82 77 94 94 93 91 98 94 113 115
0.8 53 50 55 51 94 94 81 79 84 80 143 148

TABLE 2. THE ASYMPTOTIC RELATIVE EFFICIENCY ei(a,o) X100 UNDER BIVARIATE
EXPONENTIAL DISTRIBUTION

(A): xj=0.2, X2=0.2, X3=0.3

(B): xl0.05, X2=0.35, X3 =0.3

el(1,O) e2 (1,O) e3(1,O) el(1,1) e2 (1,1) e3 (1,1)

(A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B)

-0.8 287 286 299 293 290 290 243 240 254 246 245 243
-0.6 291 290 304 297 292 292 248 245 259 252 249 247
-0.4 294 293 308 300 294 294 253 251 265 257 253 251
-0.2 297 297 312 305 297 297 258 256 271 263 258 256
0.0 300 300 316 309 300 300 263 262 277 269 263 262
0.2 303 303 320 312 303 303 269 267 284 275 269 267
0.4 306 306 329 315 307 307 274 273 290 281 275 274

0.6 308 308 327 317 310 310 280 279 297 287 282 281
0.8 311 310 330 319 314 314 286 284 304 293 289 289
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